SurnameCentre
NumberCandidate
NumberFirst name(s)0

GCSE

3420U10-1

MONDAY, 19 JUNE 2023 – AFTERNOON

PHYSICS – Unit 1: Electricity, Energy and Waves

FOUNDATION TIER

1 hour 45 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	12				
2.	7				
3.	4				
4.	4				
5.	12				
6.	9				
7.	12				
8.	7				
9.	13				
Total	80				

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

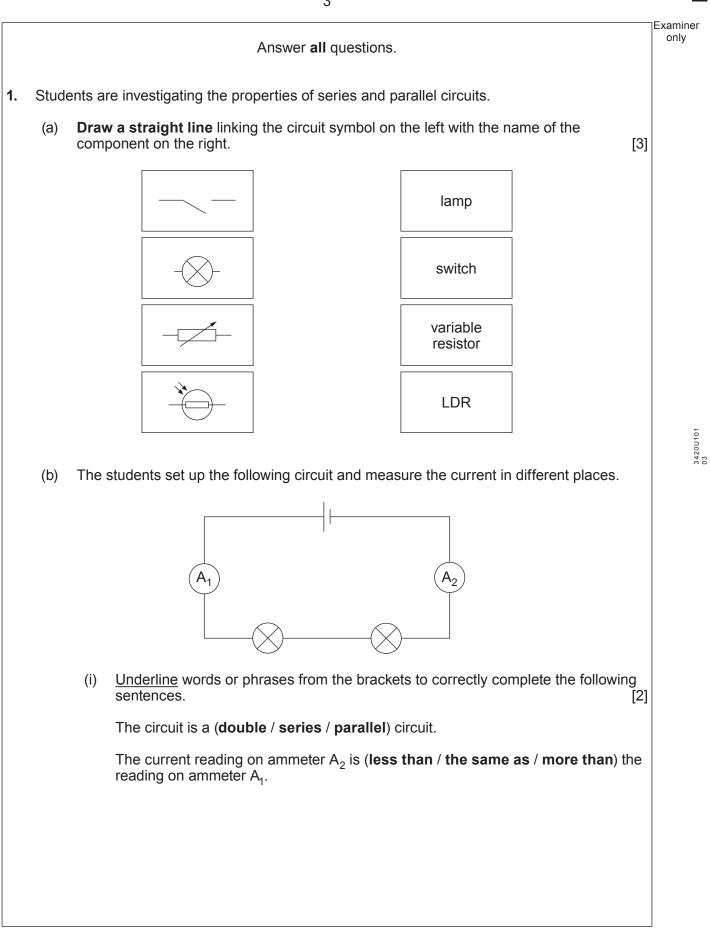
Answer all questions.

Write your answers in the spaces provided in this booklet.

If you run out of space use the additional page at the back of the booklet, taking care to number the question(s) correctly.

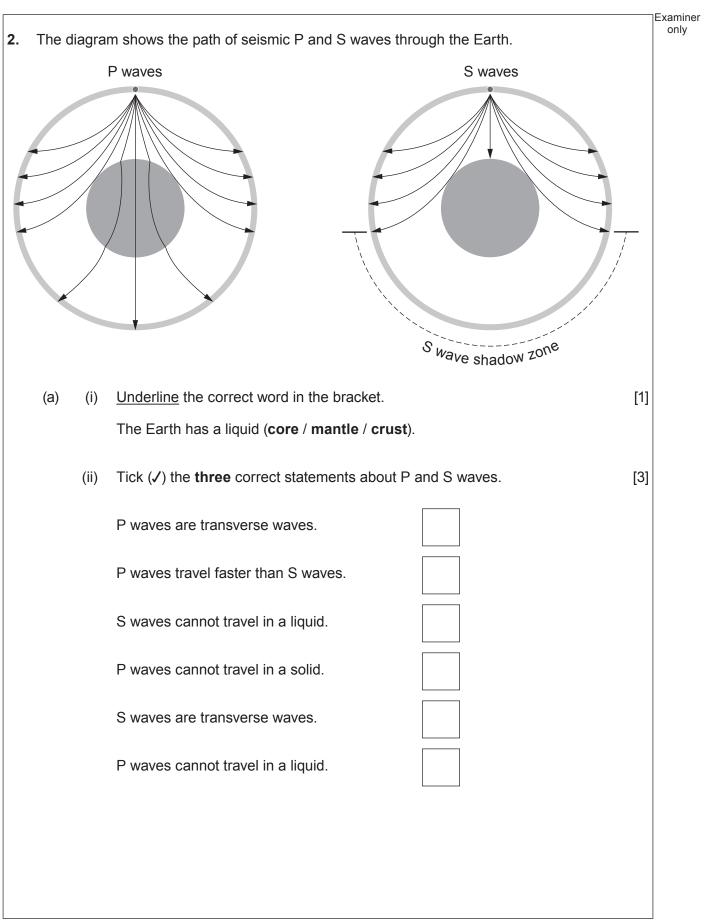
INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. The assessment of the quality of extended response (QER) will take place in question **5(c)**.


current = $\frac{\text{voltage}}{\text{resistance}}$	$I = \frac{V}{R}$
total resistance in a series circuit	$R = R_1 + R_2$
energy transferred = power \times time	E = Pt
power = voltage × current	P = VI
% efficiency = $\frac{\text{energy [or power] usefully transferred}}{\text{total energy [or power] supplied}} \times 100$	
density = $\frac{\text{mass}}{\text{volume}}$	$\rho = \frac{m}{V}$
units used (kWh) = power (kW) × time (h) cost = units used × cost per unit	
wave speed = wavelength \times frequency	$\mathbf{v} = \lambda f$
speed = $\frac{\text{distance}}{\text{time}}$	
pressure = $\frac{\text{force}}{\text{area}}$	$p = \frac{F}{A}$
change in thermal energy = mass \times specific heat change in thermal energy = mass \times capacity \times temperature	$\Delta Q = mc\Delta\theta$
thermal energy for a change of state = mass × specific latent heat	Q = mL
V_1 = voltage across the primary coil V_2 = voltage across the secondary coil N_1 = number of turns on the primary coil N_2 = number of turns on the secondary coil	$\frac{V_1}{V_2} = \frac{N_1}{N_2}$

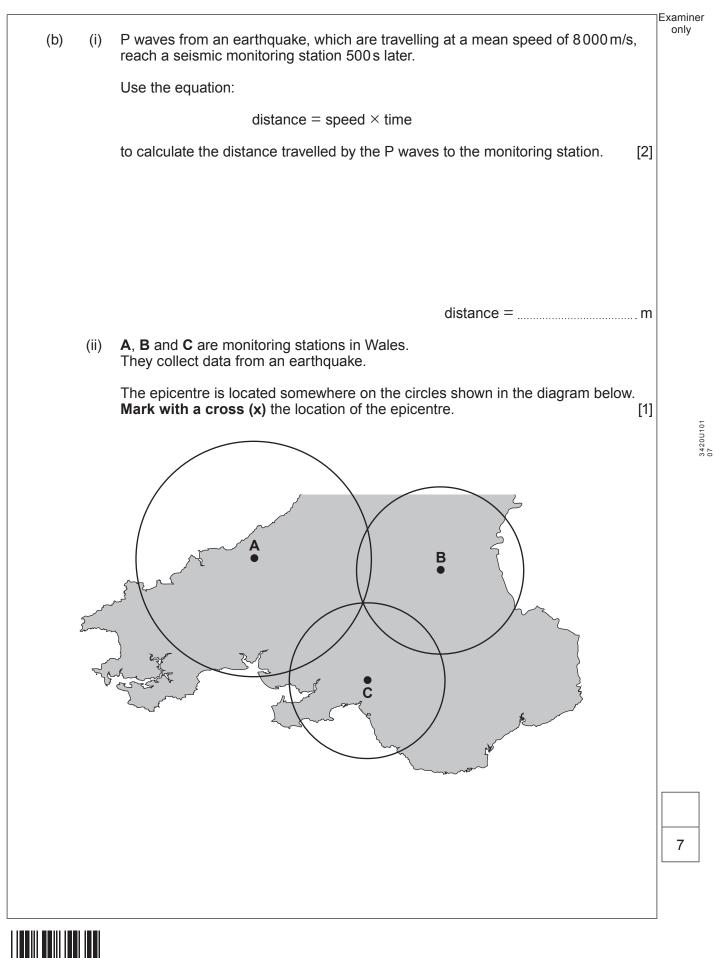
SI multipliers

Prefix	Symbol	Conversion factor	Multiplier
milli	m	divide by 1000	1×10^{-3}
centi	С	divide by 100	1×10^{-2}
kilo	k	multiply by 1000	1 × 10 ³
mega	М	multiply by 1000000	1 × 10 ⁶

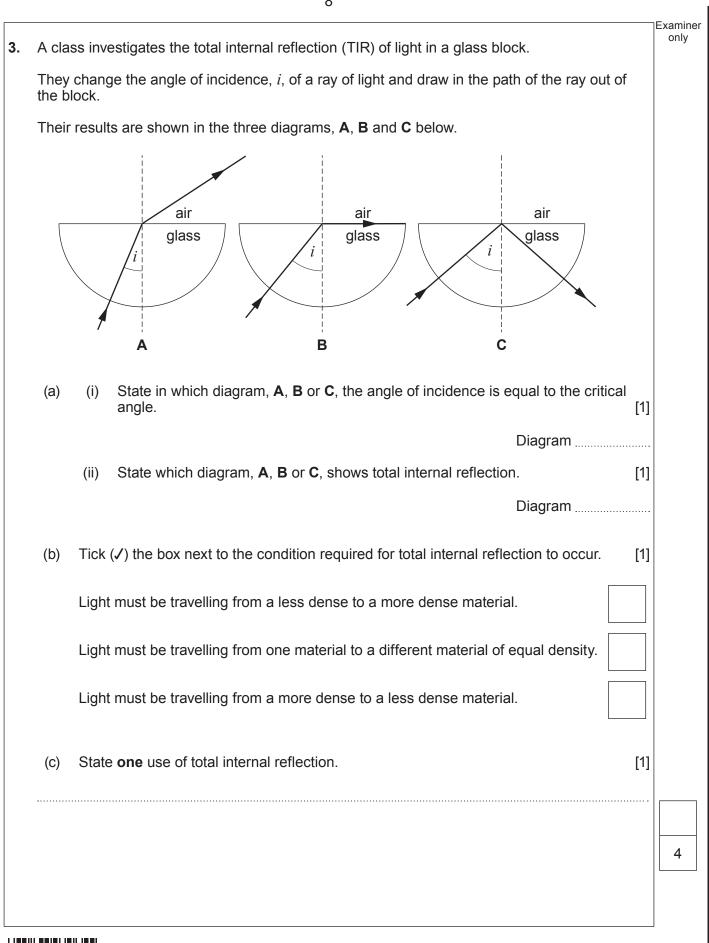


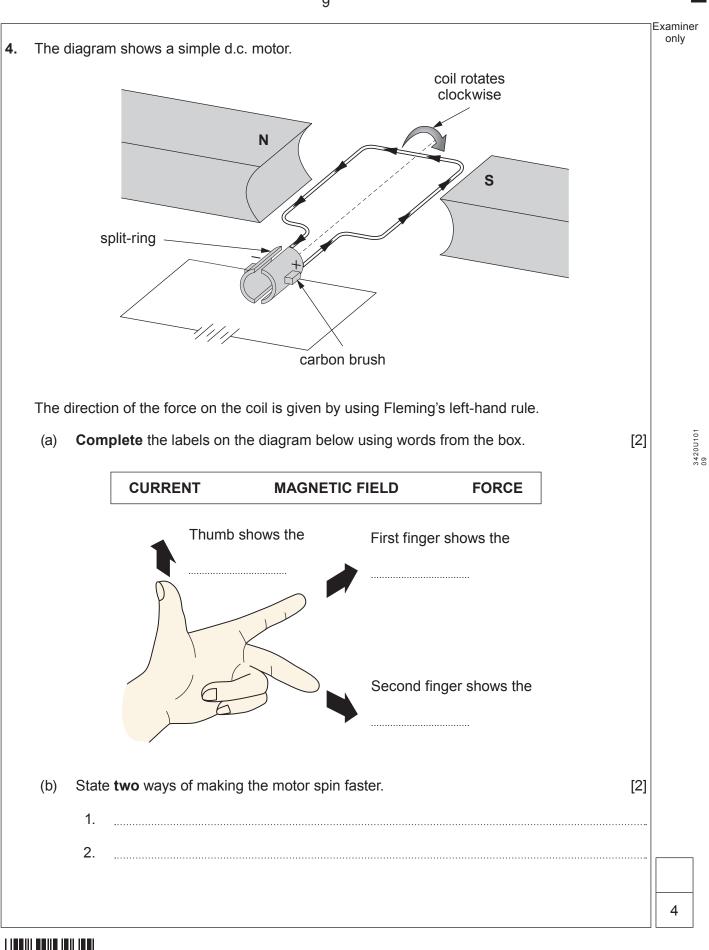
03

			Examiner
(ii)	The 0.25	battery voltage in the circuit is $3V$ and the current through the lamps is $5A$.	only
	I.	Use the equation:	
		power = voltage \times current	
		to calculate the power of the circuit.	[2]
			14/
	II.	power =	VV
	11.		
		resistance = $\frac{\text{voltage}}{\text{current}}$	
		to calculate the resistance of the circuit.	[2]
		resistance =	
	111.		[1]
		J Ω kg	r.1



	The students	s now use the s	ame component	s to make the followi	na circuit	Exam
(c)			 &	(A ₂)		
			e lamps are brig h			
	Select word You may use	e each word one	from the box to o ce, more than on	correctly complete th ce or not at all.	e sentences below.	[2]
		increases	decreases	stays the same		
	_				_	
	so the currer	nt through each	lamp			
						12
						12
						12
						12
						12
						12
						12
						12
						12
						12
						12
						12
						12
						12





07

09

		Examine
Householders of	re fitted into some houses to measure how much electricity is used. can monitor and try to reduce their electricity use. the smart meter below shows the units used in 10 hours from midnight to	only
(a) (i) Use	e the equation:	
	mean power (kW) = $\frac{\text{units used (kWh)}}{\text{time (h)}}$	
and use	d information from the diagram to calculate the mean power of the appliances ed in the 10 hours. [2]	
	mean power = kW	,
		_
10	© WJEC CBAC Ltd. (3420U10-1)	

		(ii)	I.	State the cost of the electricity used in 10 hours in pence (p).		aminer only
			١١.	cost =	р	
				cost of 1 unit (p) = $\frac{\text{cost (p)}}{\text{units used (kWh)}}$		
				to calculate the cost of 1 unit of electricity.	[2]	
				cost of 1 unit =	р	
(t)	Give to red	one i luce i	reason, other than to save money, why householders should be end their electricity use.	couraged [1]	
						3420U101 11
•••••						б 4 С

12

(C)	Describe the function of an earth wire , a fuse and a residual current circuit breake (rccb).	r
	 Include in your answer: what they are each used to protect the fault that causes each of them to work. [6 QE 	.R]
······		
······		
.		
······		
·····		

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

3420U101 13

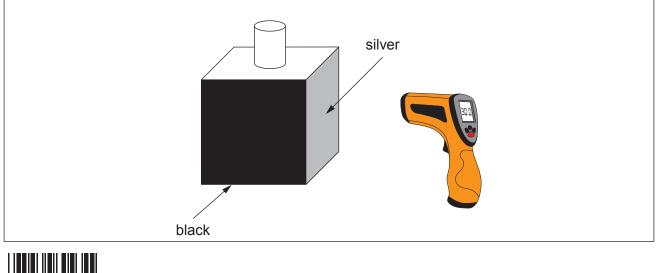
Examiner only

6. A teacher demonstrates heat transfer by infra-red radiation.

Experiment 1

The teacher places a heater in between a black surface and a silver surface.

After a few minutes the temperature of each surface is recorded using an infra-red thermometer.

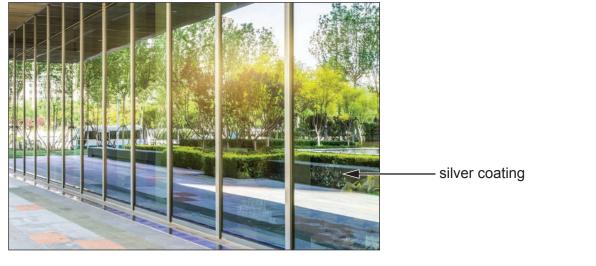


Experiment 2

14

The teacher fills the container with boiling water.

The infra-red thermometer is then used to take readings next to the side of the container which is black and the side which is silver.



Black surface Silver surface Experiment 1 46 32 Image: Temperature (°C) Black surface Silver surface Black surface Silver surface Silver surface Experiment 2 90 65 Use the data to complete the following sentences. (i) The	
Temperature (°C) Black surface Silver surface Experiment 2 90 65 Use the data to complete the following sentences. (i) The	
Black surface Silver surface Experiment 2 90 65 Use the data to complete the following sentences. (i) The	
Experiment 2 90 65 Use the data to complete the following sentences. (i) The	
 Use the data to complete the following sentences. (i) The surface is the better emitter of heat as shown by the results for Experiment because (ii) The surface is the better absorber of heat as shown by the results for Experiment because 	
 (i) The surface is the better emitter of heat as shown by the results for Experiment because (ii) The surface is the better absorber of heat as shown by the results for Experiment because 	
 (ii) The surface is the better absorber of heat as shown by the results for Experiment because 	
(ii) The surface is the better absorber of heat as shown by the results for Experiment because	
(ii) The surface is the better absorber of heat as shown by the results for Experiment because	
as shown by the results for Experiment because	[2
	[2

Examiner

(b) Silver coating can be put on the outside of windows to help to keep houses cool in summer and warm in winter.

State why the silver coating helps to keep the house warm in the winter.

(c) A family consider different methods of reducing their energy bills. Data about these methods are given in the table below.

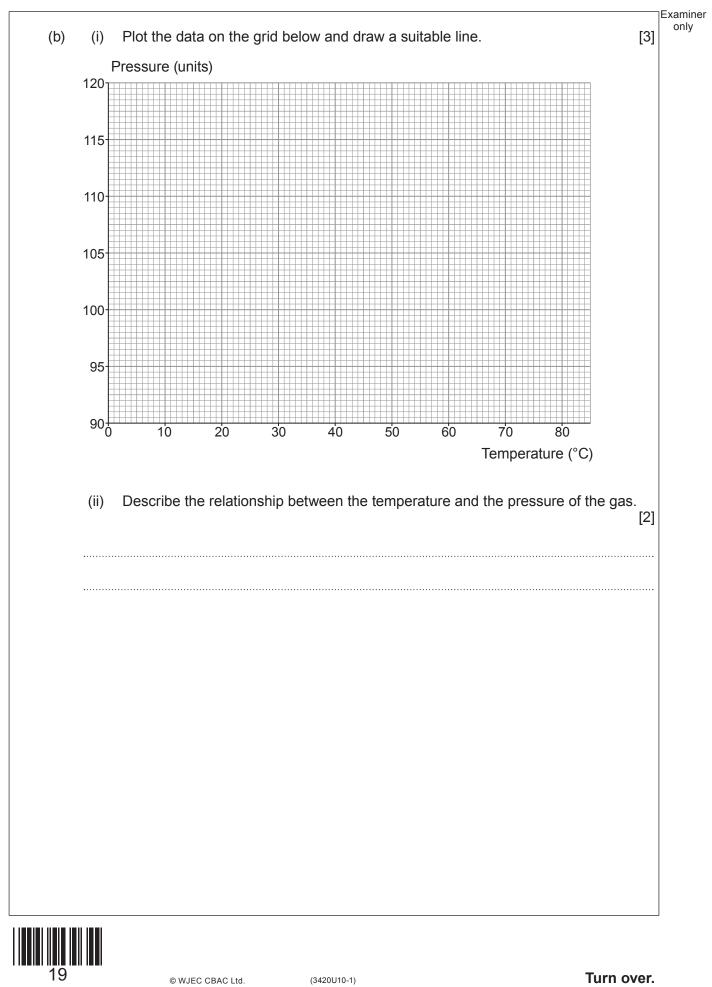
Method	Cost (£)	Yearly savings (£)
Cavity wall insulation	640	160
Loft insulation	480	160
Silver coating	500	25

(i) Calculate the payback time for the silver coating.

[2]

[1]

payback time = _____ years


	(ii)	The family can only choose to fit one of the items. Ieuan suggests that it is better to fit cavity wall insulation than loft insulation. Use data from the table to explain whether you agree. Space for calculations.	Examiner only
			9
17		© WJEC CBAC Ltd. (3420U10-1)	ver.

Examiner only

A teacher uses the apparatus shown below to demonstrate the link between the temperature

7.

and pressure of a gas. The metal bulb, which is attached to a pressure gauge, contains a fixed volume of air. The bulb is placed in a water bath and measurements of pressure for different temperatures are recorded. 80 metal bulb (a) State the independent variable in this experiment. [1] The following results were obtained. Temperature Pressure (units) (°C) 0 94 20 100 40 106 60 112 80 118 18 © WJEC CBAC Ltd. (3420U10-1)

		Examiner
	 (iii) I. Use information from the graph or the table to determine the decrease in pressure for every 10°C decrease in temperature. 	only
	decrease in pressure =	units
	II. Use your answer to part I. above to determine the pressure of the gas a −10 °C.	t [1]
	pressure =	units
	(iv) State the value of absolute zero in °C.	[1]
	absolute zero =	°C
(c)	The specific heat capacity of air, c , at constant volume is 720 J/kg °C.	
	Use the equation:	
	heat energy supplied = mass $ imes$ specific heat capacity $ imes$ change in temperatu	re
	$Q = mc\Delta\theta$	
	to calculate the heat energy required to raise the temperature of 0.05 kg of air from $20 \degree$ C to $60 \degree$ C.	[2]
	heat energy =	J
		12

BLANK PAGE

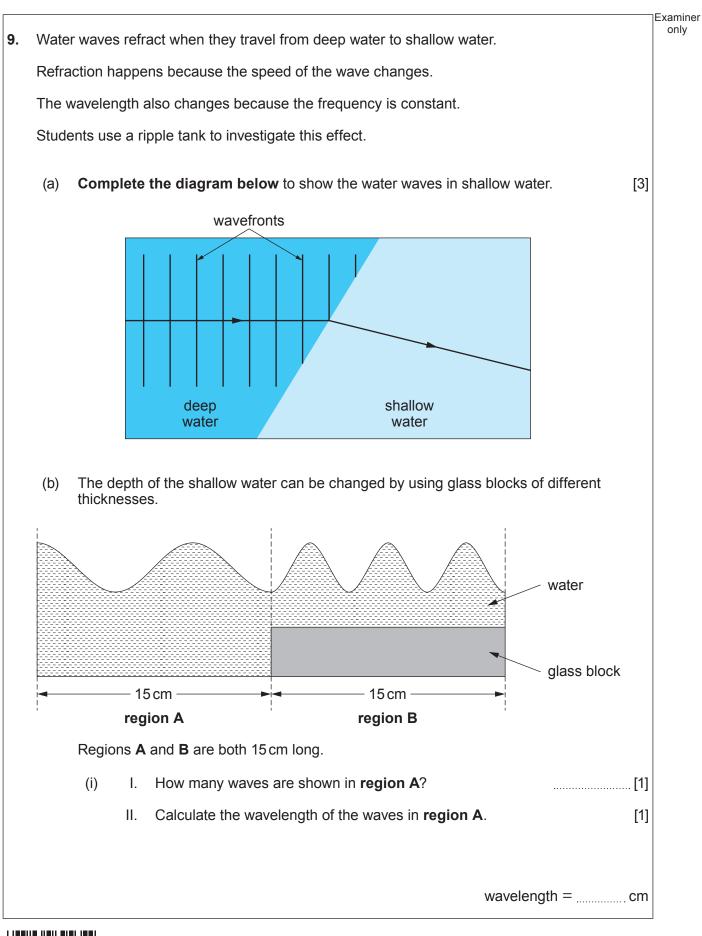
PLEASE DO NOT WRITE ON THIS PAGE

Examiner only

8. The table below gives information about four types of power station.

The table ranks the power stations in order from 1 to 4 for three different features. Rank 1 is best and rank 4 is worst.

Power station	Efficiency	Rank	Running cost	Rank	Emissions	Rank
Туре А	25%	4	Second highest	3	Highest polluting emissions	4
Туре В		1	Practically zero	1	No emissions	1
Туре С	35%	3	Highest	4	Has cleaner emissions than type A power stations	2
Туре D	40%	2	Second lowest	2	Cleaner emissions than type C power stations but produces radioactive waste	3


(a) Use the information in the table to answer the following questions.

(i) Gareth says that the best type of power station to recommend overall by ranking is **type B**. Explain whether you agree with him. [2]

			Exa
	e energy sources fo d hydroelectric .	r different types of power station are fossil fuel , nucl	ear
Co Eac	mplete the table be ch energy source m	elow for the energy sources for types A , B , C and D . ay be used once, more than once, or not at all.	[3]
	Туре	Energy source	
	Α		
	В		
	C		
	D		
) Use the i a type B	nformation below ar power station.	nd an equation from page 2 to calculate the % efficien	cy of [2]
		ut energy = 200000 MJ	
		ergy produced = 30000MJ energy produced = 170000MJ	
	Lioothour		
		% efficiency =	

© WJEC CBAC Ltd.

depth of water	dents investigate how the o	different tank, stu		n another ex affects wave
	ent thickness glass blocks.	water using different	e the depth of the	They change
		nt at 10 cm.	vel is kept consta	The water le
		esults.	low shows their r	The table be
	Wave speed (cm/s)	Depth of water (cm)	Thickness of glass block (cm)	
	60	2	8	
	75	4	6	
	82		4	
[1]			lete the table.	(i) Comp
			e equation:	(ii) Use th
		elength = $\frac{\text{wave sp}}{\text{freque}}$	wave	
the thickness	ncy s of frequency 50 Hz when	e lieque		to calc
[2]		n.	glass block is 6 cr	of the
n = cm	wavelength			
	5			

(iii)	Janet states that when the thickness of the glass block decreases by 2 cm the wave speed increases by a quarter. Explain to what extent Janet is correct. Space for calculations.	[3]	Examiner only
	END OF PAPER		13
26	© WJEC CBAC Ltd (3420U10-1)		

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

